当前位置:»资讯 AI新闻 全球AI最前线

[行业动态] 国产GPU万卡集群,摩尔线程夸娥智算中心解决方案重磅升级

7月3日,上海——摩尔线程重磅宣布其AI旗舰产品夸娥(KUAE)智算集群解决方案实现重大升级,从当前的千卡级别大幅扩展至万卡规模。摩尔线程夸娥(KUAE)万卡智算集群,以全功能GPU为底座,旨在打造国内领先的、能够承载万卡规模、具备万P级浮点运算能力的国产通用加速计算平台,专为万亿参数级别的复杂大模型训练而设计。这一里程碑式的进展,树立了国产GPU技术的新标杆,有助于实现国产智算集群计算能力的全新跨越,将为我国人工智能领域技术与应用创新、科研攻坚和产业升级提供坚实可靠的关键基础设施。
640.webp

此外,摩尔线程联合中国移动通信集团青海有限公司、中国联通青海公司、北京德道信科集团、中国能源建设股份有限公司总承包公司、桂林华崛大数据科技有限公司(排名不分先后)分别就三个万卡集群项目进行了战略签约,多方聚力共同构建好用的国产GPU集群。

摩尔线程创始人兼CEO张建中表示:“当前,我们正处在生成式人工智能的黄金时代,技术交织催动智能涌现,GPU成为加速新技术浪潮来临的创新引擎。摩尔线程矢志投身于这一历史性的创造进程,致力于向全球提供加速计算的基础设施和一站式解决方案,为融合人工智能和数字孪生的数智世界打造先进的加速计算平台。夸娥万卡智算集群作为摩尔线程全栈AI战略的一块重要拼图,可为各行各业数智化转型提供澎湃算力,不仅有力彰显了摩尔线程在技术创新和工程实践上的实力,更将成为推动AI产业发展的新起点。”
AI主战场,万卡通用算力是标配
大模型自问世以来,关于其未来的走向和发展趋势亟待时间验证,但从当前来看,几种演进趋势值得关注,使得其对算力的核心需求也愈发明晰。
6401.webp
首先,Scaling Law将持续奏效。Scaling Law自2020年提出以来,已揭示了大模型发展背后的“暴力美学”,即通过算力、算法、数据的深度融合与经验积累,实现模型性能的飞跃,这也成为业界公认的将持续影响未来大模型的发展趋势。Scaling Law将持续奏效,需要单点规模够大并且通用的算力才能快速跟上技术演进。
其次,Transformer架构不能实现大一统,和其他架构会持续演进并共存,形成多元化的技术生态。生成式AI的进化并非仅依赖于规模的简单膨胀,技术架构的革新同样至关重要。Transformer架构虽然是当前主流,但新兴架构如Mamba、RWKV和RetNet等不断刷新计算效率,加快创新速度。随着技术迭代与演进,Transformer架构并不能实现大一统,从稠密到稀疏模型,再到多模态模型的融合,技术的进步都展现了对更高性能计算资源的渴望。
与此同时,AI、3D和HPC跨技术与跨领域融合不断加速,推动着空间智能、物理AI和AI 4Science、世界模型等领域的边界拓展,使得大模型的训练和应用环境更加复杂多元,市场对于能够支持AI+3D、AI+物理仿真、AI+科学计算等多元计算融合发展的通用加速计算平台的需求日益迫切。
多元趋势下,AI模型训练的主战场,万卡已是标配。随着计算量不断攀升,大模型训练亟需超级工厂,即一个“大且通用”的加速计算平台,以缩短训练时间,实现模型能力的快速迭代。当前,国际科技巨头都在通过积极部署千卡乃至超万卡规模的计算集群,以确保大模型产品的竞争力。随着模型参数量从千亿迈向万亿,模型能力更加泛化,大模型对底层算力的诉求进一步升级,万卡甚至超万卡集群成为这一轮大模型竞赛的入场券。
然而,构建万卡集群并非一万张GPU卡的简单堆叠,而是一项高度复杂的超级系统工程。它涉及到超大规模的组网互联、高效率的集群计算、长期稳定性和高可用性等诸多技术难题。这是难而正确的事情,摩尔线程希望能够建设一个规模超万卡、场景够通用、生态兼容好的加速计算平台,并优先解决大模型训练的难题。

夸娥:国产万卡万P万亿大模型训练平台
夸娥(KUAE)是摩尔线程智算中心全栈解决方案,是以全功能GPU为底座,软硬一体化、完整的系统级算力解决方案,包括以夸娥计算集群为核心的基础设施、夸娥集群管理平台(KUAE Platform)以及夸娥大模型服务平台(KUAE ModelStudio),旨在以一体化交付的方式解决大规模GPU算力的建设和运营管理问题。

基于对AI算力需求的深刻洞察和前瞻性布局,摩尔线程夸娥智算集群可实现从千卡至万卡集群的无缝扩展,旨在满足大模型时代对于算力“规模够大+计算通用+生态兼容”的核心需求,通过整合超大规模的GPU万卡集群、极致的计算效率优化以及高度稳定的运行环境,以万卡智算集群的新超级工程,重新定义国产集群计算能力的新标准。
声明: 本站所有内容来源于用户上传,用来分享交流。如有资料或者图片不小心侵权,请发邮件(41835170@qq.com)告知!
分享到:
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

豫ICP备2024052610号-1 ©AI闹海